
CVE, CME,. . . , CMSI? –

Standardizing System Information

Bernd Grobauer∗

Abstract

During the last few years, a clear trend to-
wards standardized names and exchange for-
mats could be observed in the world of IT
security. For example:
• Vulnerability Information: CVE, a

list of standard names for Common Vul-
nerabilities and Exposures [8] allows the
IT-security community to cross-reference
information about vulnerabilities. The
EISPP/DAF format [3, 4] – in produc-
tive use by several CERTs within Europe
– allows exchange of security-advisory in-
formation.

• Incident Information: The IODEF
format [6] is used for exchanging incident
information between CERTs.

• Vulnerability Checks, Remedia-
tion and Avoidance: OVAL [9] is
a standardization effort regarding ex-
ecutable descriptions of vulnerability
checks. OVAL descriptions can, for ex-
ample be integrated into NIST’s exten-
sible configuration checklist description
format (XCCDF) [12].

• Malware Information: Recently, the
US-CERT announced an initiative to in-
troduce CME, a Common Malware Enu-
meration to allow the cross-referencing
between different names for the same
malware artifact.

All these standardizations ease co-
operation and re-use regarding security-

∗Siemens AG, Corporate Technology, Information
& Communications Division, Siemens CERT. Email:
bgrobauer@cert.siemens.de

related issues. A problem that has not
been tackled so far is the standardization
of system information. Similarly to CVE,
system information is orthogonal to other in-
formation exchange formats: Which systems
are affected by the vulnerability described
in an advisory? What kind of system was
involved in a security incident? For which
kind of system is a vulnerability check or
configuration setting applicable?

As CVE did, a common naming scheme for
(machine-readable) system information would
increase the potential of standards for infor-
mation exchange: automated handling based
on system information, e.g., for statistical
purposes, correlation and filtering, becomes
possible.

Can a common naming scheme for system
information be established? This article de-
scribes the approach taken by a group of Ger-
man CERTs towards a common model of sys-
tem information (CMSI).

1 Introduction

At time of writing, suppliers of vulnerability
information (security advisories, vulnerability
databases, etc.) and incident response teams
use proprietary models for specifying system
information: suppliers of vulnerability infor-
mation need to inform about which systems
are affected by a new vulnerability, incident
response teams need to communicate which
type of system was attacked during an inci-
dent. Without a model of some kind, system
information cannot be provided consistently :
a product that was called “Microsoft Explorer

1

V6.0” in yesterday’s advisory, should not be
referred to as “MS Internet Explorer (ver-
sion 6.00)” in today’s advisory. Obviously,
a record of established identifiers for systems
must be kept and consulted whenever system
information is to be specified. For many pur-
poses an informal record may be enough: by
cutting and pasting (human readable) system
information from older advisories or incident
reports, a certain degree of consistency can be
kept. If, however, reliable methods for filter-
ing or other automated manipulations of sys-
tem information are to be used, a dictionary
of identifiers and a set of syntactic rules are
indispensable. Such a dictionary clarifies once
and for all that Microsoft’s browser product
is to be called, say, “Internet Explorer” and
maybe defines an additional purely machine-
readable identifier for this product. Similarly,
the model may prescribe a standard way for
specifying more detailed product information
such as the product version – for the exam-
ple presented above, either the form “Vx.y”
or “version x.yz” could be prescribed. In
this article, we refer to such a dictionary and
associated rules as a model of system infor-
mation.

This article describes the first step of an ap-
proach taken by a group of German CERTs
towards a common model of system informa-
tion (CMSI): an XML-schema for describing
a model of system information. The intended
use of CMSI is the following:
• Using the CMSI XML schema, a model

of system information can be defined and
made available, e.g., by placing the re-
sulting XML file on a web server for
download.

• The XML file specifies recognized com-
ponents of IT systems and informs about
the format in which detailed information
about such components (patch level, lan-
guage version, etc.) must be described.

• Following the definitions made in the
XML file, machine-readable system infor-
mation can be included in structured in-
formation such as advisories following the

EISPP/DAF [3, 4] advisory standard.
• Once machine-readable system informa-

tion is available, advanced applications
such as filtering out irrelevant advisories
or creating user profiles for advisory ser-
vices can be implemented.

It would be advantageous, if one instance of
a common model of system information could
be agreed upon – to be used, for example,
for information exchange between CERT or-
ganizations. Using the CMSI XML schema,
a working group of German CERT organiza-
tions has started to define a common model of
system information, examples from which are
cited within this paper. The common model
defined by German CERTs could be a good
starting point for defining a ’single’ common
model of system information. If that proves
to be infeasible, the work on CMSI presented
in this paper should still be useful to anybody
with the need of making system information
machine readable: CMSI offers a thought-
out approach to standardizing system infor-
mation.

The remainder of this paper is structured
as follows: Section 2 presents a concise intro-
duction to CMSI, Section 3 gives a detailed
explanation, Section 4 describes possible ap-
plications of CMSI, and Section 5 concludes.

2 A feasible Common Model

The most successful information model used
within the IT-security community is CVE.
Regarding structure and content, there are at
least two significant differences between stan-
dardizing vulnerability names and standard-
izing system information.

Requirements on Structure The simple
structure of CVE, which uses a flat list of vul-
nerability identifiers, is not suitable for spec-
ifying system information. System informa-
tion requires more structure and the possi-
bility to move between very coarse and very
detailed information: a system may very well

2

MS Windows 2000 Workstation

MS Windows 2000 Server

"SP[0-9]+"

...
MS Windows 2000 Datacenter Server

MS Windows 2000 Advanced Server

patchlevel:

language:

Attributes for products of this family:

Vendor: Microsoft

(use ISO-649 2-letter codes)

(aserver)

(dserver)

(server)

(w2k)

(ws)

(lang)"[a-z][a-z]"

(patchlevel)

Windows 2000

Node attributes:

Figure 1: Example of how the product family “Windows 2000” could be represented in CMSI.

be coarsely specified as “Windows”, more ac-
curately as “Windows 2000”, and in a very
detailed way as “Windows 2000 Professional,
SP2, German language version”. To be use-
ful, a common model of system information
must cater for all these levels. Equally im-
portant: if very detailed system information
is received, but only coarse information (e.g.,
Windows vs. Unix) is wanted, the coarse in-
formation must be easily extractable.

Both requirements – additional structure
and several levels of detail – can be imple-
mented using a tree-like structure rather than
a flat list.

Requirements on Content The world of
products is more dynamic than the world of
vulnerabilities, or rather dynamic in a differ-
ent way: while every new vulnerability consti-
tutes an entity of its own, existing products
change by the release of new versions, name
changes, etc. What is more: the way, in which
version information and other attributes of in-
terest are given varies from product to prod-

uct. Thus, for a feasible model of system in-
formation, a way must be found to allow pre-
cise specification of such attributes, yet keep
the model maintainable.

The CMSI Approach Based on the con-
siderations presented above, CMSI has been
designed as a category tree, whose leave nodes
are formed by product families, which cluster
closely related products. The model does not
contain lists of acceptable values for attributes
(e.g., a list of existing versions), but instead
prescribes syntactic rules. Reusable syntax
definitions for frequently used attributes –
such as common styles of version number-
ing – are given. The clustering of closely re-
lated products into product families reduces
complexity with respect to attribute defini-
tions, because for closely related products, at-
tributes such as version information are usu-
ally specified in the same way.

An Example Figure 1 gives an excerpt of
the definition of the product family Windows

3

2000: the products belonging to the family
are given and the relevant attributes are de-
scribed. For the family as a whole, each prod-
uct and each attribute, a machine-readable
tag is defined. The syntax of how to spec-
ify each attribute is defined using regular
expressions (Unix-style notation); if neces-
sary, an explaining comment can be added.
Thus, the machine-readable representation of
a German-language Windows Server 2000 sys-
tem with SP2 could be given as

platform "w2k:server"
patchlevel "SP2"
lang "de"

In practice, however, probably XML would
be used to package the machine-readable sys-
tem information. The default format to
be used for CMSI is already part of the
EISPP/DAF [3, 4] advisory standard (Sec-
tion 4 gives an example) that could as well
be integrated into other XML-based formats.

Figure 2 shows excerpts of the category tree
that has been defined by a working group of
German CERTs. The family Windows 2000
is located under the category node Windows:
thus, one can move from a very detailed to a
rather coarse description simply by discarding
attributes and walking up the tree. Assuming,
that the machine-readable tag for the node
Windows is ‘win,’ coarse system information
about the operating system could be given as
‘platform "win".’ That may be useful, for
example, as part of a machine-readable repre-
sentation of “Apache 2.0 on Windows operat-
ing systems.”

3 Detailed Explanation of
CMSI

In the following, the proposal for a common
model of system information as outlined in
Section 2 is explained in more detail. Before
turning to a formal definition of CMSI, we
give some more information on contents and
structure.

OS

Mainframe

Mobile Computing

Network

Cisco

Telecommunication

Unix-like

Unix

Linux

Windows

Application

Business

Client

Webbrowser

Mail and Groupware

Remote Access

Multimedia

File Transfer

Office

Adobe

Security

Antivirus

Crypto

Firewall

Personal Firewalls

IDS and Monitoring

Host based IDS

VPN

Server

Application

Backup

Database

MS SQL Server

Directory

File

Infrastructure

DNS

Mail and Groupware

Network Management

Proxy

Remote Access

System Management

Web

Figure 2: Current contents of the top-level
nodes OS and Application of the CMSI cat-
egory tree. Product families are not shown.
With the addition of further product fami-
lies, subnodes may be added to cluster re-
lated product families. For example, the node
MS SQL Server clusters the families MS SQL
Server (pre 2000), MS SQL Server 2000,
and MS SQL Server 2005.

4

3.1 Contents and Structure

CMSI attempts to bring some order into the
diverse world of IT products that form parts
of IT systems using a category tree, whose
leaves are formed by product families; the lat-
ter cluster closely related products.

3.1.1 Product families and Products

A product family comprises one or more
closely related products, hence a vulnerability
affecting one of these products is very likely
to affect other members of the same family,
as well. For practical reasons, a product fam-
ily defined within the common model should
not contain more than, say, a dozen or so
products. For large product families, usu-
ally a sensible partition into several smaller
families can be found. Consider the defi-
nition of a family MS Windows as an exam-
ple. This family would contain several dozens
products such as Windows 2000 Advanced
Server, Windows 98SE, etc. Instead, several
families such as Windows 95/98/ME, Windows
NT, Windows 2000, and Windows XP should
be defined.

The relationship between products and
their respective families can be expressed with
a single level of hierarchy within the common
model: Each product is associated to a prod-
uct family. Because the members of a product
family are closely related, usually the same
categories of information regarding version,
patch levels, built, etc., will be applicable.
Therefore, in CMSI, information about what
kind of information can be associated with a
product and corresponding syntactic rules is
defined on the level of product families.

Let us revisit Figure 1: With the name of
the family, the products belonging to the fam-
ily are listed. Additionally, a set of attributes
necessary to specify affected products in detail
is defined. Because the products within the
product family are rather similar, the same
kind of additional information to completely
specify a product is necessary, in this case the

patch level in form of information about ser-
vice packs and the language version of the
product in question.

3.1.2 A (shallow) product tree

A common model based on product fami-
lies will easily grow to at least several hun-
dreds, probably thousands of families. The
model will only be useful if families can be lo-
cated easily. An obvious measure is to imple-
ment the dictionary of families and products
such that search operations are possible – es-
pecially if alternative names are stored with
families and products, most searches for prod-
ucts included in the common model will be
successful.

Additionally, structure must be added to
the flat name space of product families by
defining a tree-like structure. Let us revisit
Figure 2, which displays fragments of a pos-
sible tree structure; the leaves always corre-
spond to product families. The tree is rather
shallow: At the moment, no more than four
levels are used – a more deeply nested struc-
ture is very likely to create more confusion
than help organize product families.

Already with a shallow tree, it is not always
quite clear, where a product family should be
placed. Consider MS Exchange, which has
the functionality of an email server, but much
else besides. A user browsing the tree for MS
Exchange therefore might not immediately
search under Server and Email. For this rea-
son, instead of a strict tree, a more relaxed
representation is chosen: product families can
be linked into the tree structure more than
once. MS Exchange, for example, could also
be a direct descendant of the Application
node or some Groupware node that might ex-
ist. Thus, a user navigating the tree would
have better chances of finding product fami-
lies where she expects them.

If we examine the various nodes within the
tree fragment, we encounter three types of
nodes:

5

Structural Nodes are added to the tree
to provide structure, such as OS and
Application.

Relation Nodes group product families
that are closely related. This happens
especially with operating systems:
consider the Windows and Linux nodes.

Profiling Nodes also provide structure, but
additionally might be interesting for pro-
filing purposes. For example, server ad-
ministrators might be especially inter-
ested into product families to be found
somewhere under the Server node.

As mentioned in Section 2, not only prod-
ucts and product families can be used for
specifying system information: by walking up
the tree, coarser information can be given,
usually with relation nodes such as Windows.

3.1.3 Node Attributes

One aspect of information is still missing:
what about information to be associated with
nodes (category nodes or leaves, i.e., product
families) rather than an actual instance of a
product? Consider, for example, information
that is fixed for all products within a prod-
uct family such as vendor information. Obvi-
ously, defining a vendor attribute in the same
way as the patch-level attribute and language-
version attribute does not make sense: patch
level and language version vary from case to
case, while the vendor stays always the same.

The mechanism to integrate useful,
(mostly) static information into a model
of system information are node attributes,
which are defined as part of the system’s
meta data. Node attributes must be filled in
for those nodes for which the information is
applicable. For example, a vendor attribute
should be filled in for almost all product
families. A platform attribute, on the other
hand, would be meaningful only for category
nodes or product families representing appli-
cations: this way, information about which

application runs on which operating systems
could be integrated into the model.

3.1.4 Attribute Type Definitions

Above, we have seen that the Windows 2000
product family specifies, how information
about service packs can be given. Obviously,
the very same definition would be present in
other product families such as Windows NT,
Windows XP, and Internet Explorer. To re-
duce complexity of the model and support
consistency within the model, such defini-
tions must be reused rather than rewritten
for every applicable product family. There-
fore, CMSI allows the specification of attribute
type definitions as reusable attribute defini-
tions within product families.

3.2 The Formal Definition of CMSI

CMSI uses XML as underlying description
language: the current XML-DTD is available
via the CMSI home page [2] on the web site
of the “Deutscher CERT-Verbund” (German
CERT association). Here, we use a pseudo-
formal notation in BNF to explain how CMSI
is used. Figure 6 on page 11 shows an excerpt
of the model defined by the German CERT
working group in XML syntax.

3.2.1 Top-level structure

A CMSI-definition file has the following top-
level structure:
SysInfoModel ::= <type def.>*

<node attr.>*
<category tree>
<family>*

Before a category tree and product families
can be described, meta data has to be defined:
• Attribute type definitions are used to con-

strain attributes – node attributes and
attributes used within product families.
For example, an attribute to specify a
patch level (see the example in Figure 1)
is certainly used in several families; its
type should be defined once and for all:

6

the model is kept consistent and reuse re-
duces complexity.

• Node attributes can be used to define con-
tent that should be filled out for every
category node and product family. In the
example in Figure 1, the vendor attribute
is filled out to be “Microsoft.” Not every
node attribute will be applicable to every
node: for the category node OS, the ven-
dor attribute will remain empty, while for
the category node MS SQL Server (see
Figure 2), it is to be filled out as “Mi-
crosoft”.

The meta data is followed by a definition of
the category tree and the product families.

3.2.2 CMSI meta data

type def ::= <type id>
<descr.>?
((grammar <grammar>)
| (LoV <value list>)
| nodes

)

where

value list ::= (<value tag>
<name>
<descr.>?)+

node attr ::= <attr. id>
<type id>
<name>
<descr.>?

Figure 3: Explanation of CMSI syntax in
pseudo-formal notation: CMSI meta data.

Figure 3 details the definition of CMSI meta
data. Every attribute type definition contains
a unique type identifier for cross-reference
within the model, a description (optional) and
information about which kind of type is de-
fined:
• A type can be defined grammatically as

a regular expression as used, for exam-

ple, in the programming language Perl.
The type of the language attribute used
within the product family Windows 2000
(see Figure 1), for example, specifies the
regular expression [a-z][a-z], i.e., a
two-letter code. The description field
of the type definition is used to inform
about the semantics of the code: a ISO-
639 two-letter language code is to be
used.

• A type can be defined by a list of val-
ues (LoV). To fill in an attribute of such
a type, one or more items from a pre-
defined list of values must be chosen. An
item in such a value list consists of a
machine-readable tag, a human-readable
name, and an optional description.
For example, the type of the vendor at-
tribute is defined as a list of values. One
item in this list has the name “Microsoft”
and machine-readable tag ms. In this
case, a description probably is not nec-
essary – for smaller vendors, though, a
comment with a pointer to the vendor’s
web site could be useful.

• A type can be defined as a set of
nodes. For example, the platform at-
tribute given above as an example for a
possible node attribute could be realized
by referencing nodes representing operat-
ing systems. At the moment, CMSI offers
no way to constrain the set of nodes that
can be used: further experiences with
CMSI will show, whether the possibility
to give such constraints is necessary.

The list of node attributes makes use of the
defined attribute types. Each node attribute
is specified with a unique identifier, a name, a
type identifier referencing the attribute type
to be used, and – optionally – a description.

3.2.3 Category tree and product fam-
ilies

Figure 4 details the definition of the category
tree and the product families.

The definition of the category tree is

7

category tree ::= <category node>*

category node ::= <node tag>
<name>+
<descr.>
<node attr. value>*
<children>

node attr. value ::= <attr. id>
<value>+

children ::= <category node>*

family ::= <family tag>
<parents>
<name>+
<descr.>?
<node attr. value>*
<product>*
<product attr.>+

parents ::= <node tag>+

product ::= <product tag>
<name>+
<descr.>?

product attr. ::= <attr. tag>
<type id>
<name>
<descr.>?

Figure 4: Explanation of CMSI syntax in
pseudo-formal notation: category tree and
product families.

straightforward: a machine-readable tag is
followed by one or more names (we allow syn-
onyms), an optional description, a list of at-
tribute values for this node, and a list of
category nodes that are the node’s children.
An attribute value is given by referencing the
unique identifier of a node attribute and list-
ing one or more values of the proper type.

The definition of a product family starts
with a unique machine-readable tag and con-
tinues with a list of category nodes that are
the parents of a product family. The ratio-

nale behind allowing product families to be
located under more than one category node
is that a perfect categorization in which there
would be one and only one logical place for a
given product family is unrealistic. Although
the possibility to associate a product family
with more than one parent node should not
be overused, ambiguities in the categorization
can be resolved this way.

Just as for category nodes, we allow more
names for a product family, which is use-
ful especially in the case of changing prod-
uct names: the old name, which may still be
in common use, does not have to be discarded
but can be kept in the model. Similarly to cat-
egory nodes, a description can be given and
values for applicable node attributes can be
specified.

A product family contains products defined
by a machine-readable tag unique within the
product family, one or more product names
and an optional product description. The
machine-readable tag of a product is derived
by joining the product family’s tag with the
product’s tag using a colon “:”. Single prod-
ucts are represented by a product family con-
taining no product definitions: the product
corresponds to the product family.

Similarly to the top-level definition of node
attributes, product-family-specific attributes
can be defined.

4 Applications of CMSI

As has been argued in the introduction, even
a single organization dealing with system in-
formation needs some model of system infor-
mation. The model may very well be informal
and still be sufficient for applications such as
issuing advisories that only contain human-
readable information. Applications such as
automated filtering based on user profiles or
configuration-management data, however, are
out of the question without a formal model of
system information.

CMSI has grown out of an effort to stan-

8

dardize security-advisory information within
the EISPP [4] project, now continued as
DAF [3]. Figure 5 shows an example of how
system information based on the model de-
fined by a work group of German CERTs
could be used within a DAF-advisory: The
system information says that Apache 1.3.x
and 2.0 on Windows 2000 and Windows XP,
and Apache 2.x on Unix-like systems are af-
fected.

Note that abbreviations such as 1.3.x must
be given a well-defined semantics fit for the
implementation of filter mechanisms recogniz-
ing, e.g., the version 1.3.24 as instance of the
shorthand notation 1.3.x. The necessity to
define proper semantics for all attributes un-
derlines the importance of reusing attribute
definitions as implemented by attribute type
definitions within CMSI.

<system_list cat_model="german_cert_wg">
<system>
<system_part type="platform">
<instance tag="w2k"/>
<instance tag="wxp"/>

</system_part>
<system_part type="software">
<instance tag="apache">
<attribute_value tag="version">
<value>1.3.x</value>
<value>2.x</value>

</attribute_value>
</instance>

</system_part>
</system>
<system>
<system_part type="platform">
<instance tag="unix"/>

</system_part>
<system_part type="software">
<instance tag="apache">
<attribute_value tag="version">
<value>2.x</value>

</attribute_value>
</instance>

</system_part>
</system>

</system_list>

Figure 5: Example of machine-readable sys-
tem information as part of a DAF-advisory.
The system information says that Apache
1.3.x and 2.0 on Windows 2000 and Windows
XP, and Apache 2.x on Unix-like systems are
affected.

Also other standards could make good use
of a common model of system information:
• The CVE-based databases ICAT [5] and

Cassandra [1] use proprietary models of
system information. The use of an es-
tablished common model to express sys-
tem information would certainly pro-
vide added value to the users of these
databases.

• IODEF [6] is used for the exchange of
incident information. With the use of
machine-readable system information in
IODEF, automated correlation and gen-
eration of statistics becomes possible.

• XCCDF [12], a standardized language for
specifying configuration checklists, recog-
nizes the need to provide structured sys-
tem information: a subcomponent of the
XCCDF XML schema, the CIS platform
schema [11], specifies how local system
definitions can be undertaken in a given
checklist. A common model of system
information could tie together different
checklists written in XCCDF.

• Data collected as part of the projected
common malware enumeration (CME)
would certainly contain system informa-
tion. Again, providing such information
based on a common model would provide
added value and enable automated tech-
niques such as correlation, filtering and
generation of statistics.

Another promising application area for
CMSI is configuration management. Complex
software systems may contain 50 and more
OEM software components. Vendors of such
systems must keep track of the exact config-
uration, for example to react to vulnerabil-
ity information concerning components used
within the system. Ideally, configuration
data maintained in a CMSI-compatible for-
mat could be used as profile for filtering advi-
sory information containing system informa-
tion based on CMSI.

5 Conclusion

So far, the following milestones regarding
CMSI have been achieved:

9

• An XML schema for describing the con-
tents of the common model (category tree
and product families) has been defined.
It is described in this paper and available
from the CMSI home page [2].

• An XML schema for including sys-
tem information based on CMSI has
been defined and is already part of the
EISPP/DAF [3] advisory exchange for-
mats.

• CMSI has been tightly integrated into
the open-source development of the in-
cident handling system SIRIOS [7, 10],
a project of CERT Bund. SIRIOS also
supports IODEF and EISPP/DAF.

• A standard category tree has been agreed
upon for use within the German CERT
community. At time of writing, this cat-
egory tree is being filled with the most
important product families.

Already at this stage, CMSI – whose struc-
ture is based on a careful analysis of require-
ments and constraints regarding models of
system information – can be applied for pro-
prietary models. Now, future work must focus
on establishing a common model of system in-
formation for a user-base that is as broad as
possible. Co-operation of interested parties
regarding the design of a standardized cate-
gory tree and standardized product families
would provide the chance to close a gap left
by all standardization efforts in the field of
information security so far.

The working group of German CERTs will
continue to build up a workable model for
common use within the German CERT associ-
ation. However, a broader base of maintainers
and users would of course be highly desirable
– one way to achieve this could be the mainte-
nance of a common model under the auspices
of an organization such as FIRST.

Acknowledgments

I am indebted to the members of the Advi-
sory Format Interest Group of the Deutscher

CERT-Verbund, participants of the EISPP
project, and my colleagues from Siemens
CERT for fruitful discussions on the subject.
Special thanks are due to Andreas Bunten
of DFN-CERT and Thomas Klingmüller from
CERT-Bund for their timely comments on an
earlier draft of this article.

References

[1] Cassandra homepage. See https:
//cassandra.cerias.purdue.edu.

[2] CMSI homepage. See http://www.
cert-verbund.de/cmsi.

[3] DAF Advisory Format Description. Avail-
able from http://www.cert-verbund.de/
daf/daf_description.html.

[4] EISPP Common Advisory Format Descrip-
tion, v2.0. Available from http://www.
eispp.org.

[5] ICAT Metabase. See http://icat.nist.
gov/.

[6] Incident Object Description and Exchange
Format. See http://www.ietf.org/html.
charters/inch-charter.html.

[7] Thomas Klingmüller. SIRIOS – a framework
for CERTs. In Proceedings of the 17th Annual
FIRST Conference, 2005.

[8] David E. Mann and Steven M. Christey. To-
wards a common enumeration of vulnerabil-
ities, January 1999. Available from http:
//cvs.mitre.org/docs/cerias.html.

[9] OVAL – Open Vulnerability and Assessment
Language. See http://oval.mitre.org/
index.html.

[10] SIRIOS homepage. See http://www.
cert-verbund.de/sirios.

[11] David Waltermire and Neal Ziring. CIS
platform schema, 2004. Available from
http://csrc.nist.gov/checklists/docs/
platform-0.2.3.xsd.txt.

[12] Neil Ziring. Specification for the extensi-
ble configuration checklist description format
(XCCDF). Technical Report NISTIR 7188,
NIST, 2005. Available from http://csrc.
nist.gov/checklists/xccdf.html.

10

...
<TypeDefs> (* Type Definitions *)

<TypeDef id="vendor_lov" kind="LOV"> (* Type for specifying vendors *)
<ValueList>
<ListElement tag="ms" name="Microsoft"/>
<ListElement tag="suse" name="SuSE"/>
...

</ValueList>
</TypeDef>
<TypeDef id="os_nodes" kind="nodes"> (* Type for specifying OS nodes *)
<Description>Category nodes or product families that

refer to operating systems</Description>
</TypeDef>
<TypeDef id="service_pack" kind="grammar"> (* Type for specifying patch level as service pack *)
<Description>The patch level, e.g., of Windows OSes is specified

with a service pack number of form
"SP1", "SP1a", "SP2", "SP3", possibly followed by a single lower-case letter.
No leading zeros (e.g., "SP01") are used!</Description>

<Grammar><![CDATA[SP[0-9]+[a-z]?]]></Grammar>
</TypeDef>

</TypeDefs>
...
<NodeAttributes> (* Node Attributes *)

<NodeAttribute id="vendor" type_id="vendor_type" name="Vendor"> (* Node attribute ’Vendor’ *)
<Description>This attribute specifies the vendor of a product family.</Description>

</NodeAttribute>
<NodeAttribute id="os" type_id="os_nodes" name="Platform"> (* Node attribute ’Platform’ *)
<Description>This attribute only applies to applications. It specifies all

the platforms a given application runs on.</Description>
</NodeAttribute>
...

</NodeAttributes>
...
<Families> (* Product Families *)
...
<Family tag="w2k"> (* Product Familiy Windows 2000 *)
<Parents>

<Parent tag="win"/>
</Parents>
<Names>

<Name>Windows 2000</Name>
</Names>
<Description>The Windows 2000 product family</Description>
<Products>

<Product tag="server"> (* Product ’Windows 2000 Server *)
<Names>

<Name>Windows 2000 Server</Name>
</Names>
<Description></Description>

</Product>
...

</Products>
<AttributeValues>

<AttributeValue attribute_id="vendor"> (* Filled-in value for node attribute ’Vendor’ *)
<Value>ms</Value>

</AttributeValue>
</AttributeValues>
<ProductAttributes> (* Specification of family-specific attribute ’Service Pack’ *)

<ProductAttribute tag="patchlevel" type_id="service_pack" name="Service Pack"/>
...

</ProductAttributes>
</Family>
...

</Families>
...

Figure 6: Excerpts from the model of system information defined by a working group of
German CERTs. The only component of which nothing is shown is the category tree, whose
definition is rather straightforward.

11

